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Relaxation in disordered systems? 

by WILLEM SIEBRAND and TIMOTHY A. WILDMAN 
Division of Chemistry, National Research Council of Canada, 

Ottawa, Ontario, Canada K1A OR6 

Non-exponential relaxation in disordered systems may be interpreted in terms 
of a distribution of exponential rate constants that arises naturally from a narrow, 
random distribution in the value of a structural parameter (distance or angle) which 
characterizes the inequivalent sites within the system. This analysis is applied to the 
decay of methyl radicals in glassy methanol and to other systems. In the former case, 
the underlying assumptions have been tested experimentally. Such an approach 
indicates in general terms which kind of disorder is responsible for the observed 
decay. It also offers the prospect of obtaining a detailed description of the 
microscopic structure of a reactive site. 

1. Order in disorder 
All ordered systems resemble each other, but each disordered system seems to be 

disordered in its own way; that is, the pattern of organization in structurally ordered 
systems is easily appreciated, but the notion that a pattern can be discerned in the 
manner in which disordered systems deviate from perfect order remains largely 
hypothetical. To find some order in disorder is a formidable challenge to theorists and 
experimentalists alike, and one that will require a good deal of interaction between 
them. In this article, we look at disorder by following relaxation processes. Theoreti- ‘ 

cally, this may not seem to be a promising approach because relaxation is a 
complicated, dynamic process that often is not easy to fathom in an ordered system. 
Experiments tell us, however, that many relaxation processes in disordered systems 
follow a common pattern; they proceed non-exponentially in such a way that the 
effective rate constant seems to decrease in time, the so-called ‘stretched exponential’ 
decay. In ordered systems, such as crystals, the ‘sites’ (atoms, molecules, etc.) relax in 
random order, leading to an exponentially decaying signal. Paradoxically, in a 
disordered system, the sites relax in a hierarchical order because disorder makes the 
sites different. Thus non-exponential relaxation measures these differences and, since 
relaxation rates are often extremely sensitive to structural differences, it measures them 
very accurately. 

2. Connection between structure and relaxation rate 
It is not difficult to put these ideas into a mathematical form. We start from the 

assumption that, in a perfectly ordered system, the relaxation is exponential with a rate 
constant k,. We then introduce structural disorder such that a structural parameter, 
which has the value R ,  in the crystal, assumes a distribution of R-values. We shall 
assume that the rate constant k varies exponentially with R: 

k = k, exp [ - 1(R - R,)] 

t Issued as NRCC No. 25306. 
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Such a dependence is very common for rate processes and can be derived, at least for IR 
-R,I<<R,, for a variety of models (Siebrand et al. 1983, 1984, Doba et al. 1984a, b). 

To complete the picture, we need to assume a distribution of R values, @(R). If the 
distribution is narrow, i.e., if IR - R,I << R,, and if the deviations R - R ,  are random and 
independent of each other, @(R) will be a Gaussian 

@(R) = 7t- lj2r- exp [ - ( R  - ~?,)~/r’] (2) 
where r is the halfwidth of the distribution. By substituting (1) into (2) subject to 
I@(R)dRI = IF(k)dk], we get the distribution of rate constants 

F ( k ) = ~ - ” ~ ( k l T ) - ~  exp (-[ln(k/k,)]2/A2r2} (3) 
The time dependence of the relaxation process will then be given by the Laplace 
transform of F(k): 

At) = jrn F(k)exp (- kt) dk 
0 

(4) 

so that 

exp (- x2/yz - k,t exp x) d x  (5 )  f( t )  = 71 - 1 ’ Z Y  - 1 

where x =In (klk,) = - A(R - R,) and y = RT. 
Although this integral must be evaluated numerically, which is clearly a disadvan- 

tage, the result is simple enough to allow direct comparison with experiment. It 
involves two unknown paramerers: k,, the rate constant corresponding to the ‘average’ 
structure R,, and y, the halfwidth of the gaussian distribution of In k values. These 
parameters are usually not known a priori, but must be derived from the data. Hence an 
extensive data set is generally required to obtain meaningful results. 

3. Some examples 
As a first application, we consider methyl radicals in a methanol glass. A radical 

abstracts a hydrogen atom from the methyl group of methanol, thereby turning into a 
methane molecule. The glass is, of course, a disordered system and the methyl radical 
signal decays non-exponentially (Bol’shakov and Tolkatchev 1976, Stepanov et al. 
1978, Bol’shakov et al. 1980, Vyazkovkin et al. 1983, Doba et al. l983,1984a, b, 1985). 
The hydrogen transfer proceeds by tunnelling. The application of equation (l), which 
states that the tunnelling rate constant varies exponentially with the tunnelling 
distance, is supported by explicit model calculations for this system; these calculations 
account satisfactorily for the observed temperature and isotope dependence of the 
tunnelling rate constant (Doba et al. 1984a, b). The assumption that we are dealing 
with a distribution of exponential rate constants can also be tested for this system, since 
the distribution can be altered by the way we prepare the radicals. Normally, they are 
prepared photochemically by illumination for a period short compared to the 
relaxation time. We can change the distribution in a controlled way by longer 
illumination with reduced intensities. The predicted change in the relaxation is 
confirmed by actual observations, as expected for a distribution of exponential rate 
constants (Doba et al. 1983, 1984b). Hence, we have independent evidence that 
equations (1) and (4) apply, so that comparison with (5) should amount to a test of 
equation (3). Such a comparison is shown in figure 1. Clearly, equation (5) can provide a 
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Figure 1. Decay of methyl radicals in methanol glass plotted semilogarithmically against tS, 
where f l=  a/(l+ Q) is chosen to give the best fit to equation (6). Open (solid) symbols and 
the lower (upper) abscissa correspond to hydrogen (deuterium) transfer. Solid curves and 
broken lines represent the best least-squares fits obtained with equations (5) and (6), 
respectively. 

good fit to the experimental data, confirming the assumed gaussian distribution of 
hydrogen tunnelling distances in the glass. A similar analysis of the decay of 
trifluoromethyl radicals yields comparable fits (Doba and Wildman, unpublished). 

Is it possible to extract more detailed information from the decay curves? For 
methyl radicals trapped in glassy methanol, this is indeed the case. Analysis of the 
temperature and isotope dependences of k,, with the aid of a suitable model for the 
reaction, indicates a value for R, which allows us to evaluate 1 theoretically. Thus, we 
can obtain a value for the halfwidth, r, of the distribution of tunnelling distances. This 
result can be tested theoretically by computer simulation of the glassy solution. We can 
go further by studying mixtures of CH,OH and CD,OD, for which the distribution 
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@(R) is isotope-independent. A detailed treatment of such systems is beyond the scope 
of this article; however, these simple arguments show the power of the analysis based on 
equations (I), (2) and (4). 

We now consider three additional applications: decay of a photochemical hole, 
dielectric relaxation in an orientationally disordered solid, and haeme-ligand rebinding 
at low temperatures. 

The plot in figure 2 refers to photochemical hole burning. Site-selective excitation of 
dye molecules in a matrix leads to shifts of the absorption band of the excited molecule 
due to local photochemistry (Breinl et al. 1984). As a result, a hole is burned in the 
inhomogeneously broadened absorption band. Relaxation of the dye leads to 
disappearance of the hole: this process is non-exponential and is reasonably well 
described by equation (5). However, the range of signal strengths is not large. 

The plot in figure 3 refers to dielectric relaxation of orientationally disordered, 
hexagonal ice Ih, which involves rotation of polar molecules (Gough and Davidson 
1970). The process is again non-exponential in time, but the plot is different from those 
in figures 1 and 2 because the relaxation is measured as a function of frequency: figure 3 
shows the absorptive component of the complex dielectric constant. Again, the solid 
curve obtained from equation (5) appears to give a reasonable fit. 

The plot in figure 4 refers to recombination of carbon monoxide with the haeme 
prosthetic group in myoglobin at low temperatures (Siebrand et al. 1985). The system is 
prepared by photodissociation of the haeme-ligand complex under conditions such 

I \-=-.- 

0 

I I I I 

0 5 10 15 20 
-0.6 

+V3, inl/3 

Figure 2. Decay of the area of a photochemical hole in the absorption spectrum of 1,4- 
dihydroxyanthraquinone in 3 : 1 ethanol-methanol glass. Open (solid) symbols corre- 
spond to hydrogen (deuterium) transfer. Solid curves represent the best least-squares fits 
obtained with equation (5). 
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Figure 3. Dielectric loss curve for ice Ih at 181 K and 110 bar pressure. Solid and broken curves 
represent the best least-squares fits obtained with equations (5) and (6), respectively. 
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Figure 4. Decay of carbon monoxide concentration through geminate recombination with the 
haeme in myoglobin. Solid curves represent the best least-squares fits obtained with 
equation (5). 
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that the CO molecule remains trapped inside the haeme pocket (Austin et al. 1975, 
Alberding et al. 1976, Beece et al. 1980, Dlott et al. 1983). This reaction resembles that 
leading to photochemical hole burning. A good, if imperfect, fit is obtained. 

4. The rate constant distribution 
Although this group of examples can easily be extended, it is large enough to 

indicate that the present analysis is meaningful. It would be premature to claim that a 
universal equation has been found to account for all relaxation processes in disordered 
systems. We therefore limit ourselves to the claim that the present approach opens the 
way to relate non-exponential relaxation to structural disorder. It has been common 
practice to describe disorder in dynamic terms, such as a distribution of potential 
energy barriers. These, however, are derived quantities that cannot be directly 
observed. Clearly an interpretation in structural terms brings us much closer to the 
basis of disorder. 

An empirical relation that has frequently been used to describe non-exponential 
relaxation is the ‘stretched exponential’ function 

At)=exp [-(t/zeff)b’(l +@I (6) 
where o>O and zeff is an effective relaxation time (Kohlrausch 1847, Williams and 
Watts 1970, Williams et al. 1971). The corresponding distribution F(l/z) can be 
obtained by an inverse Laplace transformation, which yields, to a good approximation, 

where zo corresponds to the peak in F(l/z) (Helfand 1983). This result is exact for o = 1 
and satisfactory for other values of o, except in the physically insignificant regions near 
F(l/z) = 0 and o = 0. There have been a number of efforts to ‘derive’ equation (6) from 
physical models, none of them very convincing (Ngai 1979, 1980, Cohen and Grest 
1981, Shlesinger and Montroll 1984, Palmer et al. 1984, Rajagopal et al. 1984). 
Furthermore, this equation goes to the wrong limit (dAt)/dt-+oo as t-0) and the 
distribution (7) does not yield a finite average value of k. If we ignore these difficulties 
and interpret (7) by means of (l), we get 

(8) 

(9) 

1 F(l/z)=F(l/z,)exp -+- (1  -ax-exp(-ox)} “: 1) 
For small 1x1, equation (8) reduces to 

F( l / z )  N F( 1 /zo) exp [ - ko(2 + o)x2] 

i.e., a gaussian with a halfwidth 2/[o(2+r~)]~/~. For large x, i.e., small R, we obtain 
instead 

F( l/z) N F( l/zo) exp (+ + l/o) exp [ - (1 +4o)x] (10) 
i.e., an exponential distribution. Hence, the main difference between equations (5) and 
(6) lies in their behaviour for small R ,  i.e., at short times. Since short-time results may be 
uncertain because of slow instrument response and long-time results suffer from low 
signal-to-noise ratios, the success of the empirical equation (6) can be qualitatively 
understood on the basis of its similarity to equation (5). This is confirmed by numerical 
comparisons. 
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5. Conclusion 
In this article, we have interpreted non-exponential relaxation behaviour in various 

systems in terms of structural disorder. The main result is not only a new equation, but 
especially a new viewpoint. We assume that the observed, non-exponential decay is a 
linear superposition of the fundamental, exponential decays and that each of these in 
turn corresponds to a particular structural arrangement. This feature unifies the 
various examples presented above. Potentially, an approach of this kind allows a 
detailed description of the microscopic structure of the disordered system in the 
neighbourhood of a reactive site. The examples quoted indicate that, in many cases, the 
structural disorder can be described, to a first approximation, as due to small, random 
and independent deviations from local order. 
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